

RÉPUBLIQUE DU SÉNÉGAL

MINISTÈRE DE L'ENVIRONNEMENT ET DU DÉVELOPPEMENT DURABLE DIRECTION DES AIRES MARINES COMMUNAUTAIRES PROTÉGÉES RESERVE NATURELLE COMMUNAUTAIRE DE PALMARIN

RAPPORT SUR L'INVENTAIRE FLORAL DE LA RESERVE NATURELLE COMMUNAUTAIRE DE PALMARIN (RNCP)

02-17 Février 2016 Capitaine Abdou DIONGUE Badara DIOUF

Table des matières

INRODUCTION	3
I. PRESENTATION DE LA RNCP	3
1.1. Situation géographique et administrative	3
1.2. Milieu physique	4
1.3. Végétation	5
II. OBJECTIFS DE L'INVENTAIRE	5
III. MATERIELS UTILISES	5
IV. DEMARCHE METHODOLOGIQUE	7
4.1. Dispositif d'échantillonnage	7
4.2. Inventaire floral	7
V. RESULTATS	11
5.1. Traitement des données	11
5.2. Quantification de la biomasse et l'estimation du carbone équivalent	11
5.2.1. En écosystème de mangrove	11
VI. DISCUSSIONS RECOMMANDATIONS	30
6.1. En mangrove	30
6.2. En savane	31
ANNEXES	32
Annexe 1 : Liste des participants	32
Annovo 2 · Fichos d'inventaire	32

INRODUCTION

La connaissance des potentialités forestières en termes de ressources ligneuses nécessite la réalisation d'un inventaire floral. C'est pourquoi, le potentiel ligneux de la RNCP a été évalué du 02 au 17 Février grâce à un inventaire de la biomasse de ses différentes strates (savane boisée, savane arborée, tanne, savane arbustive, zones marécageuses, zones agricoles et jachère, forêt mangrove et plantation de mangrove).

Ce travail est réalisé par Enda Energie avec la collaboration de la RNCP et les éco-guides de la réserve.

En effet, c'est le premier inventaire réalisé depuis la création de la réserve en 2001 et a pour but de faire un état des lieux sur la biomasse et le carbone disponible.

Ce rapport s'articule autour de cinq parties que sont respectivement:

- Présentation de la RNCP ;
- Les objectifs de l'inventaire ;
- Le matériel utilisé ;
- La méthodologie ;
- Les résultats et discussions.

I. PRESENTATION DE LA RNCP

1.1. Situation géographique et administrative

La RNCP se trouve à l'Est de la commune de Palmarin qui elle-même se trouve dans l'arrondissement de Fimela, région de FATICK. La commune couvre une superficie de 10455 ha¹ avec sa réserve et est limitée au Nord par la commune de Fimela, à l'Ouest par l'océan Atlantique, au Sud et à l'Est par le bras de mer du Saloum (le bolong).

La commune compte cinq villages (Ngallou qui regroupe les quartiers Sam-Sam et Sessene, Ngueth, Goudoumane et Jaxanor qui abrite le hameau de Djiffer.

-

¹ Source DAMPC 2015

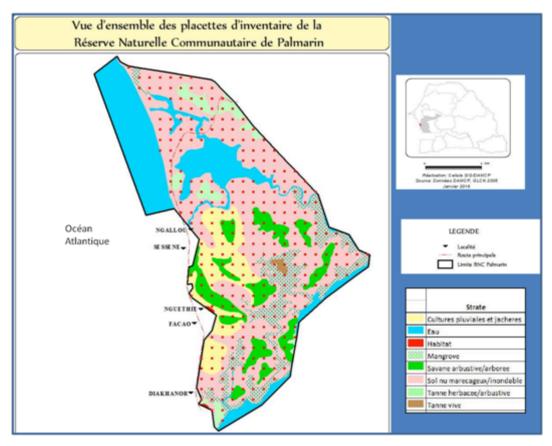


Figure 1 : Carte de la RNCP avec les placettes d'inventaire (Source : DAMPC, 2016)

1.2. Milieu physique

Le Relief

Le relief de la RNCP est un plateau qui présente quelques petites dépressions dans la partie du bolong et une partie des tannes vives à basse altitude. On note aussi des formations de petites dunes de sable dans la partie Ouest.

≻ Le Climat

La sa situation géographique de la commune de Palmarin lui confère un caractère de presqu'île avec une température moyenne de 28°C.

Les trois principaux vents qui soufflent dans la localité sont : l'Alizé maritime, l' Harmattan et la Mousson.

> Les Sols

On rencontre dans la RNCP des sols Dior favorables aux cultures pluviales, au maraîchage et à l'élevage, des tannes et des sols argileux dans les zones de mangrove.

> Le Réseau hydrographique :

Il est marqué par le bras de mer du Saloum et l'Océan Atlantique. Ce qui offre d'importantes opportunités de pêche et d'écotourisme.

1.3. Végétation

La végétation de la RNCP est principalement constituée de mangrove (1220 ha), de savane arbustive/arborée (1030 ha) et de tanne herbacée/arbustive.

La liste des espèces rencontrées au cours de cet inventaire est présentée dans la dernière partie de ce rapport.

II. OBJECTIFS DE L'INVENTAIRE

Dans le contexte d'une exploitation anarchique des forêts par les populations autochtones peu soucieuses de l'avenir de ces ressources naissait en 2001 la RNCP. Ceci dans le but de protéger les ressources disponibles et de densifier la population des espèces animales et végétales.

C'est ainsi que pour une bonne connaissance des potentialités forestières de cette réserve, Enda Energie, comme par le passé s'engage, avec la participation des agents de la réserve à faire l'inventaire floral.

Cet inventaire a aussi pour objectif de renseigner sur la densité et la diversité floristique, l'importance de la régénération naturelle en sanve et en mangrove, et l'état des plantations de Rhizophora réalisées dans la réserve.

Ces potentialités sous-tendent un sol favorable au développement de la végétation ; c'est pourquoi l'étude des facteurs édaphiques a aussi était réalisée.

Ce dernier objectif de cet inventaire consistera à estimer la biomasse et le carbone séquestré dans la réserve afin de mieux appréhender la part de cet écosystème dans l'atténuation des changements climatiques par la séquestration de carbone.

La réalisation de ces objectifs pourrait participer à la promotion d'une gestion plus rationnelle des forêts par le biais d'une politique de création d'autres réserves naturelles communautaires.

III. MATERIELS UTILISES

Pour réaliser cet inventaire, différents outils ont été utilisés en savane et en mangrove :

- 1. Une perche télescopique pour la mesure de la hauteur des arbres ;
- 2. Dendromètre Sunto (mesure de la hauteur des arbres) ;
- 3. Un GPS (Global Positionning System) pour la navigation vers les points échantillonnés ;
- 4. Un ruban métrique de 30 m et des jalons pour la délimitation des placettes ;
- 5. Un compas forestier pour les mesures dendrométriques de diamètre ;
- 6. Une tarière pour l'étude de la texture du sol ;

- 7. Une boussole pour la détermination des azimuts ;
- 8. Deux véhicules 4X4 et une pirogue motorisée pour le transport des équipes ;
- 9. Une clé de détermination : Flore du Sénégal : Berhault ;
- 10. Des fiches de collectes;
- 11. Une machette;
- 12. Une Carte de repérage (voir carte de situation).
- 13. Refractomètre pour la mesure de la salinité de l'eau en mangrove
- 14. Règles dépliant pour la mesure du diamètre en mangrove
- 15. Tube dépliant métallique de 3 m pour la mesure de la profondeur en mangrove
- 16. Un pH-mètre pour la mesure du pH de l'eau
- 17. Des jalons pour l'établissement de la placette
- 18. Un appareil photo pour les illustrations

Photo 1: Quelques outils utilisés

IV. DEMARCHE METHODOLOGIQUE

4.1. Dispositif d'échantillonnage

Un échantillonnage aléatoire stratifié a été utilisé sur la base d'une cartographie de la zone avec une superficie à inventorier couvrant la totalité de la réserve.

Sur la base de cette cartographie, on a dans la réserve, les formations forestières présentées dans le tableau suivant :

Tableau 1: Synthèse des superficies inventoriées, du nombre de placette en fonction de différentes strates

Strate	Superficie (ha)	Nombre placettes
Cultures pluviales et jachères	951	36
Eau	2290	0
Habitat	7	0
Mangrove	1220	51
Savane arbustive/arborée	1030	43
Sol nu marécageux/inondable	4521	184
Tanne herbacée/arbustive	403	16
Tanne vive	33	0
TOTAL	10455	330

Il faut par ailleurs noter que, l'inventaire nous a permis de constater la présence d'une zone rizicole importante.

4.2. Inventaire floral

La démarche consiste tout d'abord à rechercher le centre de la placette à l'aide des cartes de repérage et des coordonnées GPS.

a) Le repérage des placettes :

Les centres des placettes sont repérés à l'aide de la fonction « GO TO » du GPS. Grace à cette fonction, le GPS montre en permanence la direction à prendre et la distance qui sépare du centre de la placette choisie.

b) La collecte de données

Les protocoles de collectes utilisées diffèrent selon le type de végétation (savane et mangrove) :

En savane :

La méthode utilisée est celle pratiquée par le PROGEDE 2. Avec cette approche, chaque placette est matérialisée par quatre jalons suivant les points cardinaux (N, E, S, O.).

Les considérations suivantes ont été faites au centre de chaque placette :

Le remplissage de certaines informations sur la fiche :

Il s'agit du numéro de l'équipe, la date, les coordonnées GPS, la nature du sol, sa structure et sa texture (sable, argile ou limon) le relief (plateau, zone de dépression...), les signes de parcours du bétail, les coupes illicites ou émondages, etc.

Figure 2: Mesure de la profondeur du sol avec une tarière Figure 3: Etude de la texture du sol

Les mesures dendrométriques et de la hauteur :

Les différentes strates sont divisées en placettes circulaires de 20 m de rayon soit 1256 m² avec des écartements de 500 m. Le dispositif suivant a été adopté :

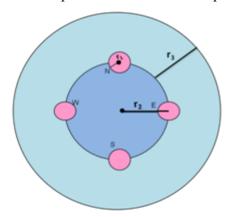


Figure 2 : Représentation schématique de la disposition des placettes d'inventaire

> Pour l'échantillonnage de la régénération :

Dans chaque placette de 20 m de rayon, une grappe de quatre placettes circulaires (r₁) de 1 m² dont les centres se trouvent à 10 m au Nord, Est, Sud et Ouest du centre a été réalisée.

Au niveau de ces placettes de 1m², certains renseignements comme le nombre d'individus de la régénération et le nombre d'espèces nous ont intéressés mais uniquement sur les individus avec un diamètre inférieur à 3,0 cm.

Figure 4: Décompte des individus de la régénération

> Pour l'échantillonnage des ligneux vivants et des souches :

On réalise une placette circulaire de 10 m de rayon (r₂) centrée sur le point échantillon puis on procède à la mesure du dbh pour les individus ayant un diamètre compris entre 3,0 et 9,9 cm.

Figure 5: Mesure du dbh à l'aide d'un compas

Figure 6: Mesure du dbh des tiges

Dans la deuxième placette de 20 m à partir du centre de la placette circulaire de 10 m de rayon (r_3), soit 1256 m², les relevés se feront uniquement sur les arbres ayant un dbh \geq 10 m. Pour les grands arbres, la circonférence à hauteur de poitrine est mesurée puis le diamètre déduit à partir de la formule D= $2\pi r$.

La hauteur est ensuite mesurée à l'aire de la perche ou du dendromètre suunto.

Figure 7: Mesure de la circonférence à 1,3 m

Figure 8: Mesure de la hauteur

> En mangrove:

Pour la collecte des données en mangrove, nous avons utilisé la méthode d'estimation développée par Donato et al. (2009) et appliquée dans le projet SWAMP (Sustainable Wetlands Adaptation and Mitigation Program).

Cette estimation de la biomasse commence par la mise en place d'un dispositif d'échantillonnage qui dépend du type de mangrove (petite, haute ou moyenne). On procède ensuite à la prise des métadonnées au niveau du centre puis aux mesures dendrométriques.

Le remplissage de l'entête de la fiche :

Après avoir repéré le centre de la placette à l'aide du GPS, les métadonnées suivantes ont été reportées : la date, les coordonnées GPS, la profondeur moyenne du sol, le pH de l'eau interstitielle, sa température et sa salinité.

Figure 09 : Mesure de la salinité de l'eau

Les mesures dendrométriques et de la hauteur :

Au préalable, nous avions procédé à la mise en place des placettes circulaires de 10 m de rayon étant donné que les mesures ont été faites uniquement sur des mangroves de petite et movenne taille.

Dans chaque placette, à partir du centre, on établit une première placette circulaire et concentrique de 2m de rayon avant d'effectuer la mesure du diamètre à 1,3 m de toutes les tiges principales dont la dernière racine est au dessous de 1,3 m et se situant dans la placette. Pour les individus de hauteur inférieure à 1, 3 m on effectue la mesure du diamètre et la hauteur avant de procéder au marquage de l'individu. Au delà du rayon de 2 m, seules les tiges ayant un diamètre ≥ 5 cm sont considérées et ceci dans l'intervalle 2-7 m uniquement. Les individus déjà mesurés seront ensuite marqués et les valeurs reportées sur la fiche.

En mangrove comme en savane, l'identification des espèces se fait par simple observation visuelle ou avec la clé de détermination de Berhault. Toutefois, lorsque l'identification de l'arbre se révèle ardue, le nom local est provisoirement noté en attendant de consulter la clé.

V. RESULTATS

Les résultats obtenus grâce à cet inventaire sont traités et présentés séparément compte tenu de la différence des approches suivant le type de végétation (mangrove et toutes savanes confondues).

5.1. Traitement des données

Pour le traitement des données collectées, nous avons utilisé le logiciel Excel. Ainsi, les relations allométriques utilisées pour estimer la quantité de carbone de la biomasse ligneuse ont été saisies sous forme de macros afin d'automatiser les calculs. Et enfin le traitement de texte a été effectué par le logiciel Word.

5.2. Quantification de la biomasse et l'estimation du carbone équivalent

La quantification de la biomasse ligneuse de chaque espèce est obtenue en utilisant les formules allométriques adaptées au type de mesure effectuée et au milieu.

Les quantités de biomasse ligneuse obtenues sont converties en masse de carbone selon différents facteurs de conversion.

5.2.1. En écosystème de mangrove

Sur une surface totale de 1220 ha stratifiés soit 51 placettes positionnées, l'objectif de départ était de réaliser un inventaire sur 20 placettes dans la mangrove. Le nombre élevé de points échantillons nous a permis de remplacer certains points de la carte qui étaient en dehors de la mangrove.

Toutes fois la plupart des points échantillonnés ont étaient déterminés sur le terrain mais toujours de façon aléatoire. Cela veut dire qu' à partir de la première placette, on mesurait 500 m suivant une direction précise pour placer le second point et ainsi de suite jusqu' à ce qu'on ait sur le site cinq (5) placettes alignées et distantes de 500 m.

Ces nouveaux points seront intégrés dans la carte et les points inaccessibles éliminés.

<u>Tableau 2</u>: Synthèse des coordonnées GPS des placettes et le nom des sites :

N° Placette	Nom du site	Latitude = X	Longitude = Y
01		0314524	1552946
02		0314028	1553009
03		0314609	1553202
04	Fossémou	0314628	1552707
05	1 ossemou	0314304	1552509
06	Ndiobolé	0311771	1551098
07	Nguininé	0312186	1550797
08	Folombite	0312665	1550943
09	— Diokholo	0313124	1551141
10	Dioknoio	0313244	1551623
11	— Diakhanor	0310024	1546446
12	2	0309510	1546529
13		0309575	1547025
14	Souhême	0310074	1547060
15	Sourcine	0310375	1547454
16	— Kobamack	0312524	1553446
17	22000111111111	0312985	1553251
18	Diénène	0313576	1553474
19	Douko	0314047	1553638
20	Ngagnane	0312029	1553369

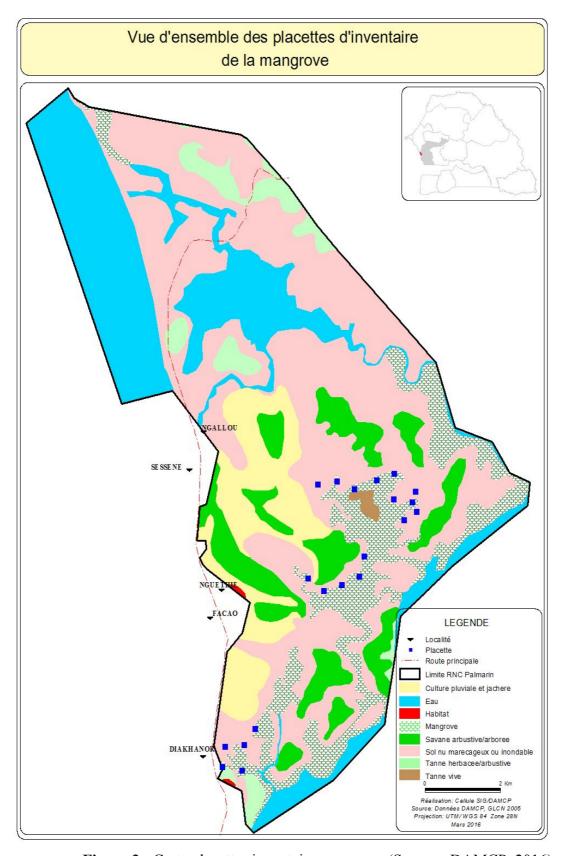


Figure 3: Carte placettes inventaire mangrove (Source : DAMCP, 2016)

Chacune des placettes des onze (11) sites est caractérisée par un pH, une salinité, une température et une profondeur de son sol.

<u>Tableau 3</u>: Valeurs moyennes de la salinité, de la température et de la profondeur des sites

SITE	pH moyen	Salinité moyenne (%0)	Température moyenne (°C)	Profondeur moyenne (cm)
Fossémou	7,26	57,6	29,394	171,25
Ndiobolé	8	50	22	>300
Nguininé	8,1	70	23,3	64
Folombite	7,9	60	23,3	>300
Diokholo	7,65	61	24,35	>300
Diakhanor	7,95	60	23,95	117,5
Souhême	8	75	26	>257
Kobamack	7,65	72,5	22,35	>300
Diénène	7,8	75	22,8	>300
Douko	7,5	65	22	125
Ngagnane	7,7	70	23,6	>300

Les espèces retrouvées dans les différentes placettes sont *Rhizophora mangle et Avicennia spp*. Cette nomenclature a été adoptée par prudence scientifique même si ces individus sont très probablement du genre *Avicennia africana*.

Toutefois, il a été signalé la présence de *Avicennia germinans* dans le Delta du Saloum ; en particulier à Diamniadio lors d'un inventaire réalisé dans le cadre du projet SWAMP en 2013. L'identification nous parait dès lors difficile car la seule espèce de genre *Avicennia* décrite dans la flore du Sénégal est *africana*.

On note aussi la présence des individus de *Rhizophora racemosa* mais ces derniers n'ont pas été retrouvés à l'intérieur de nos placettes. Une autre espèce de mangrove, extrêmement rare dans la réserve a également été retrouvée en dehors des placettes: il s'agit de *Conocarpus erectus*.

Figure 10: Rhizophora mangle

Figure 11: Avicennia spp.

Figure 12: Conocarpus erectus

Dans un écosystème, les différentes parties de la plante notamment les tiges, feuilles et racines sont capables de stocker du carbone. Pour déterminer le carbone de ces différentes composantes, il est nécessaire de déterminer d'abord la biomasse de chaque composante.

Pour se faire, on détermine le carbone de la partie épigé et celui de la partie hypogée.

5.2.1.1. Détermination de la biomasse

Pour déterminer la biomasse d'un arbre quelconque, plusieurs équations allométriques publiées sont appliquées (Chave et al. 2005). Cette estimation consiste à établir une relation entre la biomasse de l'arbre entier (ou de ses parties), et le diamètre des arbres à 1,30 m audessus du sol.

La méthodologie d'estimation que nous avons utilisée est celle de Kauffman et Donato, 2012 pour les forêts de mangrove. Notre choix se justifie par le fait que cette approche permet d'estimer séparément la biomasse de la partie aérienne et celle de la partie racinaire.

La formule allométrique utilisée dépend de l'état physiologique de la plante. On distingue la biomasse des pieds vivants et celle des arbres morts.

♣ Biomasse aérienne ou épigée (kg) :

La première étape consiste à identifier l'arbre afin d'appliquer l'équation allométrique spécifique si elle est disponible.

➤ **Pour les arbres vivants** : L'équation utilisée est celle de Fromard et al.1998 pour *Rhizophora spp*. (mangle et racemosa) : Biomasse = 0,128*D^{2,6} avec D= diamètre à 1,3 m.

> Pour les arbres morts :

Pour les arbres morts, on distingue trois classes ou statut en fonction de la nature des parties de la plante perdues. Ainsi, les différentes formules allométriques sont liées aux considérations suivantes :

- On soustrait les feuilles du calcul de la biomasse des arbres morts de classe 1, (arbres récemment morts avec des branches encore attachés. (Clough et Scott 1989, Komiyama et al. 2005, Smith et Whelan 2006).
- Pour la biomasse des arbres morts de statut 2 ayant perdu quelques branches en plus des feuilles est calculée d'une manière similaire, mais on prend en compte les feuilles et branches perdues.
- La biomasse des arbres morts de statut 3 ayant perdu une partie importante de leur volume. Le volume restant de l'arbre peut être calculée en utilisant une équation pour un

tronc. On applique ainsi les formules suivantes : classe 1 : $B=0,128*D^{2,6}*0,975$; classe 2 : $B=0,128*D^{2,6}*0.8$; classe 1 : $B=0,128*D^{2,6}*0.5$.

♣ Biomasse hypogée (racinaire) :

La biomasse souterraine est une composante importante dans les mangroves. Pour mesurer cette biomasse, l'équation générale utilisée est celle reportée par Komiyama et al. (2008) :

Biomasse hypogée (kg) =
$$0.199 * \rho^{0.899} * D^{2.22}$$

Avec ρ = densité du bois (g/cm³) et D = diamètre (dhp) de l'arbre.

Ces valeurs de la biomasse ont ensuite été converties en unité de masse par hectare (Mg/ha) pour chaque placette de 2 m ou 7 m de rayon.

Les densités respectives utilisées dans ces calculs sont 0,840 pour *Rizophora mangle* et 0,90 pour *Avicennia africana/germinans*.

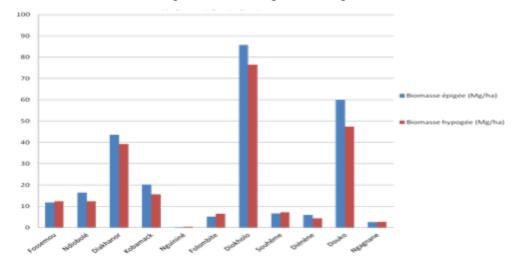
5.2.1.2. Estimation du carbone

Le carbone de la végétation est obtenu en multipliant la biomasse par un facteur de conversion. Cette teneur en carbone du bois est généralement un peu moins de 50%. On utilise également la valeur 0,46 à 0,5, si les valeurs locales ou spécifiques à l'espèce ne sont pas disponibles (Kauffman et Donato, 2012). Pour ce rapport, les équations utilisées dans l'estimation du carbone sont les suivantes :

Carbone de la partie épigée (Mg C ha-1) = Biomasse épigée (Mg/ha)*0,47

Carbone de la partie hypogée (Mg C ha-1) = Biomasse hypogée (Mg/ha)*0,39. (Kauffman et Donato, 2012).

Le stock total de carbone est estimé en sommant le carbone équivalant de tous les composants.


Après traitement des données, les différentes mesures des diamètres des tiges principales ont permis de déterminer la biomasse et le carbone des parties hypogée et épigée de la végétation pour chaque placette. Les résultats obtenus pour l'ensemble des placettes sont les suivants :

<u>**Tableau 4**</u>: Valeurs de la biomasse et du carbone total de la mangrove

Site	Biomasse épigée (Mg/ha)		Biomasse hypogée (Mg/ha)		C de la épigée C/h	(Mg	C de la partie hypogée (Mg C/ ha)			(Mg C/ na)
	Moy	Total	Moy	Total	Moy	Total	Moy	Total	Moy	Total
Fossemou	0,3	11,74	0,32	12,3	0,141	5,516	0,123	4,799	0,264	10,315
Ndiobolé	0,56	16,38	0,43	12,3	0,266	7,7	0,166	4,81	0,431	12,51
Diakhanor	0,97	43,59	0,87	39,2	0,455	20,49	0,34	15,28	0,795	35,768
Kobamack	0,75	20,19	0,58	15,6	0,352	9,492	0,225	6,063	0,576	15,554

Nguininé	0,06	0,28	0,08	0,4	0,027	0,133	0,031	0,155	0,058	0,288
Folombite	0,09	5,14	0,11	6,42	0,04	2,415	0,042	2,502	0,082	4,917
Diokholo	0,7	85,73	0,62	76,5	0,328	40,29	0,242	29,818	1,423	70,111
Souhême	0,2	6,55	0,22	7,1	0,096	3,078	0,087	2,77	0,183	5,848
Diénène	0,24	5,96	0,17	4,35	0,112	2,803	0,068	1,698	0,18	4,501
Douko	1,82	59,99	1,44	47,4	0,854	28,2	0,56	18,493	1,415	46,688
Ngagnane	0,51	2,56	0,53	2,66	0,241	1,203	0,207	1,036	0,448	2,239
TOTAL	0,56	258,1	0,49	224	0,264	121	0,19	87,42	0,532	208,74

La traduction des résultats de ce tableau en diagrammes montre la répartition de la biomasse et du carbone dans les différentes parties de la végétation et par site.

<u>Figure 4</u> : Répartition des valeurs moyennes de la biomasse hypogée et épigée (Mg/ha)

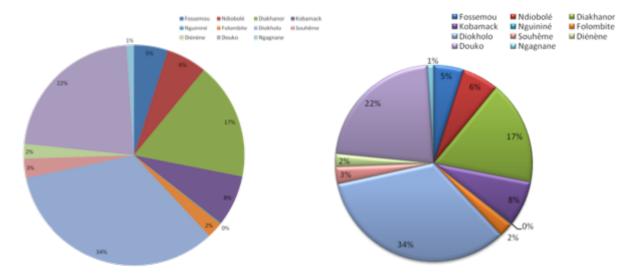


Figure 5: Répartition de la biomasse totale (Mg/ha)

Figure 6: Répartition du carbone total dans les sites (Mg/ha)

La quantité de biomasse dépend en grande partie de la densité des palétuviers, laquelle dépend de la densité des tiges. Pour apprécier ce paramètre, le graphique suivant a été établi :

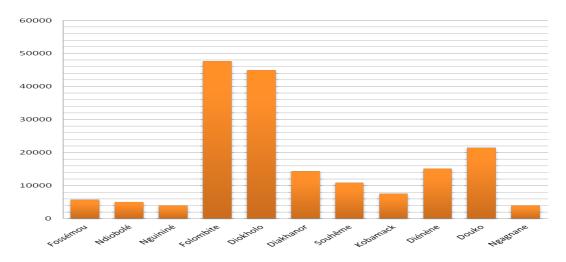


Figure 7 : Variation du nombre moyen de tige/h

5.2.2. *En savane*

5.2.2.1. Superficie placette et taux d'échantillonnage

Tableau 5 : Taux d'échantillonnage

Strate	Nombre Placette	Superficie placette R=1 m	Superficie placette R=10 m	Superficie placette R= 20 m	Superficie inventoriée	Superficie Strates m ²	Taux échantillon
Culture Jachère	36	12,56	314	1256	56972	9510000	60%
Savane arbustive/arborée	43	12,56	314	1256	68050	10300000	66%
Sol nu marécageux	14	12,56	314	1256	22156	45210000	5%
Tanne herbacée/arbustive	2	12,56	314	1256	3165	4030000	8%
Total placettes inventoriées	95						
Superficie régénération inventoriée		1193,2 m ²					
Superficie rayon 10 m inventoriée			29830 m ²				
Superficie rayon 20 m inventoriée				119320 m ²			

Au total quatre vingt et quinze (95) placettes sont inventoriées. Et le focus est plus mis sur les strates Culture-jachère et savanes compte tenu des caractères dénudés des autres strates. Au finish 79 placettes ont été effectivement inventoriées dans ces deux écosystèmes.

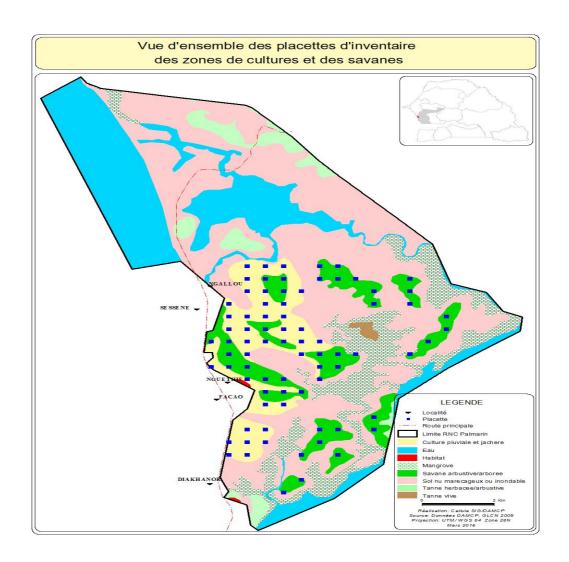


Figure 8 : Carte : placettes inventaire Savane/Culture Jachère

5.2.2.2. Inventaire de la régénération dans le rayon de 1 m

Tableau 6 : Synthèse résultats régénération

			Rayon 1	m				
Strates	Noms scientifiques	Nombre de francs de pieds	Nombre de pieds*	Nombre de cépées	Nombre de pieds*	Total pieds**	Superficie strate	Total RN
	Acacia albida	4	4	1	3	7	951	55475
	Acacia raddiana	2	2	0	0	2	951	15850
	Arithie serer	1	1	0	0	1	951	7925
	Azadirachta indica	1	1	0	0	1	951	7925
Culture/Jachère	Diospyros mespiliformis	4	4	0	0	4	951	31700
	Maytenus senegalensis	2	2	10	40	42	951	332850
	Neocarrya macrophylla	1	1	0	0	1	951	7925
	Piliostigma thonningii	11	11	0	0	11	951	87175
	Tamarix senegalensis	8	8	0	0	8	951	63400
	Ficus vogelli	17	17	0	0	17	1030	145917
	Elaeis guineensis	16	16	0	0	16	1030	137333
	Acacia albida	8	8	1	3	11	1030	94417
	Acacia ataxacantha	0	0	1	3	3	1030	25750
	Acacia ataxacantha	0	0	1	2	2	1030	17167
	Acacia raddiana	0	0	7	31	31	1030	266083
Arbustive/Arborée	Acacia raddiana	21	21	0	0	21	1030	180250
	Acacia seyal	1	1	0	0	1	1030	8583
	Avicennia africana	1	1	0	0	1	1030	8583
	Azadirachta indica	23	23	0	0	23	1030	197417
	Borassus aethiopum	4	4	2	16	20	1030	171667
	Combretum aculeatum	0	0	1	6	6	1030	51500
	Diopyros mespiliformis	10	10	0	0	10	1030	85833
	Maytenus senegalensis	84	84	5	67	151	1030	1296083

	Neocarrya macrophylla	4	4	0	0	4	1030	34333
	Piliostigma thonningii	10	10	0	0	10	1030	85833
	Rizophora mangle	1	1	0	0	1	1030	8583
	Tamarix senegalensis	8	8	3	59	67	1030	575083
	Ziziphus mauritiana	1	1	0	0	1	1030	8583
	Avicennia africana	1	1	0	0	1	4521	37675
Sol nu marécageux	Rizophora mangle	1	1	0	0	1	4521	37675

<u>**Tableau 7**</u>: Résultat global régénération

Rayon 1 m	Espèces	Nombre de pieds	Nombre pieds/ha
	Acacia ataxacantha	42917	7
	Acacia seyal	8583	1
	Acacia albida	149892	23
	Acacia raddiana	462183	71
	Arithie serer	7925	1
	Azadirachta indica	205342	32
	Diospyros mespiliformis	117533	18
Régénération naturelle	Maytenus senegalensis	1628933	251
	Neocarrya macrophylla	42258	6
	Piliostigma thonningii	173008	27
	Tamarix senegalensis	638483	98
	Avicennia africana	46258	7
	Borassus aethiopum	171667	26
	Combretum acculeatum	51500	8
	Rizophora mangle	46258	7
	Ziziphus mauritiana	8583	1
	Ficus vogelli	145917	22
	Elaeis guineensis	137333	21

Dans l'ensemble on note une bonne régénération avec une forte dominance des espèces comme *Maytenus senegalensis* (251 pieds/ha), *Tamarix senegalensis* (98 pieds/ha) et 71 pieds/ha pour *Acacia raddiana*. Pour les essences de valeur comme *Detarium segalense*, *Adonsonia digitata*, l'étude na pas noté de régénération. Par contre l'étude a démontré pour *Ziziphus mauritiana* (1pieds/ha), *Elaeis guineensis* (21 pieds/ha), *Borassus aethiopum* (26 pieds/ha), *Neocarrya macrophylla* (6 pieds/ha) et Diospyros mespiliformis (18 pieds/ha).

5.2.2.3. Inventaire dans le rayon de 10 m

Tableau 8 : Synthèse résultat rayon 10 m

Strate	Nom scientifique	Nombre d'arbres	Diamètre moyen	Hauteur moyenne	Superficie Strate	Total arbre
	Acacia albida	9	6	2,9	951	2869
	Acacia raddiana	8	4,3	3,9	951	2550
	Acacia seyal	1	5	5,6	951	319
Culture jachère	Azadirachta indica	2	4,5	4,8	951	638
	Euphorbia tricali	4	5	4,15	951	1275
	Ficus etrangleur	1	5,5	3	951	319
	Ziziphus mauritiana	27	4,9	4,3	951	8608
	Acacia albida	8	7	5,2	1030	2762
	Acacia ataxacantha	10	3,4	2,9	1030	3453
	Acacia nilotica	3	4,8	2,7	1030	1036
	Acacia raddiana	17	3,4	3,5	1030	5870
C	Acacia seyal	6	6,8	3,9	1030	2072
Savane arbustive/arborée	Azadirachta indica	3	3,3	4,1	1030	1036
arbusuve/arboree	Combretum acculeatum	8	4	2,45	1030	2762
	Jatrapha curcus	4	5,5	4,02	1030	1381
	Piliostigma reticulatum	7	3,8	2,9	1030	2417
	Prosopis juliflora	12	5,3	4,9	1030	4143
	Ziziphus mauritiana	15	5,3	4,2	1030	5179
	Ziziphus mucronata	8	5,1	7,2	1030	2762
Sol nu marécageux	Acacia albida	1	8	4,6	4521	1516

Tableau 9: Résultat global rayon 10: arbres dont 3 cm \leq diamètre \geq 9 cm

	Espèces	Nombre de pieds	Diamètre moyen	Hauteur moyenne	nombre pieds/ha
	Acacia albida	7147	7	4	1,10
	Acacia raddiana	8420	4	4	1,30
	Acacia seyal	2391	6	5	0,37
	Acacia ataxacantha	3453	3	3	0,53
	Acacia nilotica	1036	5	3	0,16
	Azadiractha indica	1673	4	5	0,26
Rayon 10	Jatropha cucas	1381	6	4	0,21
	Euphorbia tricali	1275	5	4	0,20
	Ficus etrangleur	319	6	3	0,05
	Ziziphus mauritiana	13787	5	4	2,12
	Ziziphus mucronata	2762	5	7	0,42
	Piliostigma reticulatum	2417	4	3	0,37
	Prosopis juliflora	4143	5	5	0,64
	Combretum acculeatum	2762	4	3	0,42

La densité à l'hectare des espèces forestières de diamètre supérieur à 3 cm et inférieur à 10 cm reste très faible. Elle est dominée par les essences épineuses *Ziziphus mauritiana* (2,12 pieds/ha), *Acacia raddiana* (1,3 pieds/ha) et *Acacia albida* (1,1 pieds/ha).

5.2.2.4. Inventaire dans le rayon de 20 m

Tableau 10: Synthèse résultats rayon 20 m

		Ray	on 20 m			
Strate	Nom scientifique	Nombre d'arbres	Diamètre moyen	Hauteur moyenne	Superficie Strate	Total arbre
	Acacia albida	13	25,8	7,7	951	1036
	Acacia senegal	2	13	5,6	951	159
	Acacia seyal	1	12	5,3	951	80
	Adansonia digitata	3	228,7	14,7	951	239
	Azadirachta indica	2	21,5	11	951	159
	Borassus aethiopum	11	28,4	19,7	951	877
	Cassia sieberiana	1	26	4,8	951	80
Cultura/Iaahàna	Celtis integrifolia	10	37,2	13,2	951	797
Culture/Jachère	Detarium senegalense	4	70	13,7	951	319
	Elaeis guineensis	13	27,6	8,8	951	1036
	Ficus gnaphalocarpha	2	70	11,1	951	159
	Ficus vogelii	1	57,3	17	951	80
	Lannea acida	6	20,5	7,3	951	478
	Neocarrya macrophylla	9	47,2	13,6	951	717
	Tamarindus indica	2	22,5	15	951	159
	Ziziphus mauritiana	4	17,5	7,6	951	319
	Crateva reliziosa	1	14	5,6	951	80
	Acacia albida	25	29	8,5	1030	2158
	Acacia nilotica	1	11	4	1030	86
Carrana aubrestires/aubre	Acacia raddiana	6	11,5	4	1030	518
Savane arbustive/arborée	Acacia seyal	13	13,8	4,5	1030	1122
	Adansonia digitata	9	171	14	1030	777
	Azadirachta indica	5	16,4	5	1030	432
	Borassus aethiopum	8	36	17	1030	691

	Celtis integrifolia	2	32	14	1030	173
	Detarium senegalense	4	67	8	1030	345
	Elaeis guineensis	9	35	10	1030	777
	Euphorbia balsamifera	4	13	3	1030	345
	Euphorbia tricali	1	10	4	1030	86
	Ficus cycomorus	1	10	4	1030	86
	Ficus gnaphalocarpha	2	208	15	1030	173
	Crateva reliziosa	2	13	5	1030	173
	Lannea acida	1	24	5	1030	86
	Neocarrya macrophylla	4	30	9	1030	345
	Ziziphus mauritiana	7	12	5	1030	604
Sol nu marécageux	Lannea acida	6	15	4	4521	2273
	Tamarindus indica	1	70	14	4521	379

Tableau 11 : Résultats globaux rayon 20 m : arbres dont le diamètre ≥ 10 cm

	Espèces	Nombre de pieds	Diamètre moyen	Hauteur moyenne	Nombre pieds/ha
	Acacia albida	3194	22	8	0,49
	Acacia seyal	1202	13	5	0,18
	Acacia nilotica	86	11	4	0,01
	Azadiractha indica	591	14	8	0,09
	Euphorbia tricali	86	10	4	0,01
Rayon 20	Acacia senegal	159	13	6	0,02
	Borassus aethiopum	1567	32	18	0,24
	Adansonia digitata	1016	200	14	0,16
	Elaeis guineensis	1813	32	9	0,28
	Celtis integrifolia	970	35	14	0,15
	Detarium senegalense	664	69	11	0,10
	Tamarindus indica	538	46	15	0,08
	Neocarrya macrophylla	1063	39	11	0,16
	Lannea acida	2838	20	5	0,44
	Ficus gnaphalocarpa	332	139	13	0,05
	Creteva reliziosa	252	14	5	0,04
	Ficus vogelli	80	57	17	0,01
	Ficus cycomorus	86	10	4	0,01
	Cassia sieberiana	80	26	5	0,01
	Euphorbia basamifera	345	13	3	0,05

Dans cette catégorie d'arbres la densité à l'hectare reste également faible. Elle est à dominance d'Accaia albida avec 0,49 pieds/ha.

5.2.2.5. Inventaire complémentaire des arbres fruitiers

<u>Tableau 12 :</u> Résultats inventaire systématique des espèces fruitières

	Résultat	s de l'inventai	re systématique	des arbres fru	itiers dans la	RNCP							
	Résultats de l'inventaire systématique des arbres fruitiers dans la RNCP ESPECES												
Localités	Detarium senegalense	Adansonia digitata	Neocarya macrophylla	Elaeis guineensis	Borassus aethiopium	Cocus nucifera	Tamarindus indica	Ziziphus mauritiana					
			Zone I (Dial	khanor)									
Bouba	0	107	0	0	3	0	32	310					
Forêt de Diakhanor	56	83	65	31	6	86	20	41					
Kaad de Diakhanor	45	33	52	33	3	6	7	16					
Souhème	1	63	41	2	2	0	31	61					
Habitation	0	0	0	0	0	66	0	0					
Effectif total zone I	102	286	158	66	14	158	90	428					
		Zon	e II (Ngounoum	ane / Nguethi	e)								
Combamack/sinii	15	317	12	65	560	0	48	185					
Thiobe	299	100	501	308	2	23	2	0					
Kam	66	97	19	103	2	0	3	28					
Thiobe/bélingalou	53	31	120	44	3	34	0	36					
Pathie	41	12	0	126	10	8	5	47					
Dioumbar/kaora/kouré	111	169	25	169	25	66	11	49					
Golomane/koulé	66	66	66	51	1	9	6	31					
Saata/soulbané	4	163	17	0	49	0	25	58					
Diokholo	0	44	0	0	0	0	17	41					
Douko	12	22	0	19	186	0	7	10					
fossemou	5	47	2	57	1089	0	2	2					
Diakhasso/sangosango	0	25	0	0	0	0	0	13					
Fafanda	0	26	0	0	0	0	0	1					
Habitation (Ngueth)	0	0	0	22	5	238	0	0					

Habitation (Ngounoumane)	0	21	0	0	2	198	1	2					
Effectif total zone II	672	1140	762	964	1934	576	127	503					
		Zone III (N	Ngallou Sam-sa	ım / Ngallou S	essène)								
Niassm 24 146 10 49 240 0 10 11													
Nébane	1	233	1	5	361	0	86	264					
Foundo	35	611	38	178	739	0	31	108					
Fangol	65	165	48	78	189	0	28	16					
Diade	0	107	0	0	0	0	0	155					
Diénéne	19	22	11	63	552	0	21	67					
Habitation (Sam sam-													
Sessène	0	0	0	0	0	675	0	0					
faboura	0	34	0	0	0	0	0	0					
Effectif total zone III	144	1318	108	373	2081	675	176	621					
Effectif Total	918	2744	1028	1403	4018	1409	393	1552					

Ce travail a été effectué sur une durée de 8 jours impliquant douze (12) personnes issues des 6 villages que polarise la RNCP. Il s'est fait sur toute l'étendue de la réserve et sur toutes les entités écologiques (Savanes arborées, arbustives et herbeuses, zones de culture, tann et habitations). Cette différence de résultats dans cette catégorie d'arbre entre l'inventaire par échantillonnage stratifié et l'inventaire systématique peut s'expliquer par :

- La différence d'approche : En effet, dans l'inventaire par échantillonnage stratifié c'est l'approche par tige qui a été utilisée alors que dans l'inventaire systématique l'approche par pieds a prévalu ;
- Le comptage dans des arbres situés les villages et qui concerne essentiellement Adansonia digitata, Cocus nucifera et Elaeis guineensis.

VI. DISCUSSIONS RECOMMANDATIONS

6.1. En mangrove

Au terme de l'inventaire, un total de 20 placette a été inventorié sur des mangroves de moyenne taille et des mangroves de petite taille avec quelques placettes sur des reboisements récents (2009, 2010 et septembre 2015). Le traitement des données récoltées sur le terrain montre une variation de la biomasse, du carbone et de la densité des tiges au niveau des sites. En ce qui concerne l'utilisation des équations générales de Fromard et al.1998 ainsi que celle de Kauffman et Donato, 2012 pour les espèces de mangroves dans ce travail, le choix se justifie par le fait qu'aucune équation spécifique pour les palétuviers n'est encore développée au Sénégal.

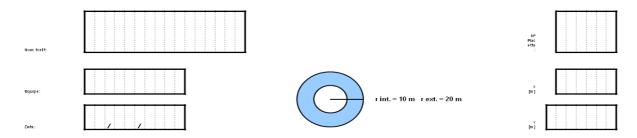
Cela peut remettre en question la précision des estimations de biomasse des peuplements de palétuviers pour plusieurs raisons : la densité du bois, la morphologie et les relations hauteur-diamètre varient selon la zone géographique. Aussi, la densité du bois des individus de la même espèce peut varier considérablement entre les sites.

Cependant, cette approche utilisée est particulièrement importante pour les stratégies d'atténuation. Elle nous a permis d'évaluer objectivement la biomasse et le carbone au niveau des onze (11) sites.

Elle révèle une répartition de la biomasse et du carbone plus importante respectivement dans le site de Diokholo, Douko, Diakhanor, Kobamack, Diobolé, Fossémou, Souhème, Folombite, Diénène, Ngagnane et enfin NGuininé avec les taux les plus faibles.

Cette différence notée est liée à la taille des mangroves puisque les cinq premiers sites sont caractérisés par une taille moyenne et les deux derniers sont des reboisements récents. Cependant, dans certains sites comme Fossémou et Souhême, on retrouve des placettes avec des mangroves de petite et de moyenne taille.

Toutefois, cette étude ne permet pas de déterminer la variation de la biomasse et du carbone selon les espèces car on a principalement des placettes mono spécifiques de *Rhizophora mangle* et des placettes mixtes de *Rhizophora et d'Avicennia spp*.


Une corrélation de la variation de la biomasse et du carbone avec la température des eaux interstitielles, la salinité, la profondeur et le pH montre que cette variation n'est pas étroitement liée à ces paramètres. Cependant, on a pu remarquer que les sites ayant le pH légèrement neutre (7,26 à 7,65) ont généralement la biomasse et la quantité de carbone

Nom forêt:			N° Pla cet te:	
Equipe:		r = 10 m	x [m]	
Date:	/ /	1=10	Y [m]	

		Cépée -				Tines	/ Souche	e à D 13	0 > 3 cm		Bille / Sur-Billes
N° Cépée	Nom scientifique ou local	Code	Nbre tiges D 20 < 3 cm Nbre tiges D 20 ≥ 3 cm	N° Tiqe	Dist. Base	Tiges	Dist. visée	Visée bas	1 1	Souche Ecorcé Emondé Mutilé Creux	Rondeur Rectitude Défauts
								,			
								,			

Souche: H tot < 0,7m

Rondeur: section cylindrique = 1/ovale = 2/cannelée = 3 Rectitude: billion droit = 1/incliné ou courbé = 2/crocheté = 3 Défauts apparents: sans = 0/mineurs = 1/moyens = 2/Majeurs = 3

	Cépée																		1	- В	ille/	Sur-	Bill	es	
N° Cépée	Nom scientifique ou local	Code	Nbre tiges D 20 < 3 cm	noreuges D 20≥3 cm	N° Tige	D 130 [cm]	Dist. Base [m]	Dist. visée [m]	s/So	Viséehaut [%] 99	Visée bas [%] 130	≥ 10	H tot [m]	 -	Souche	Emondé	Mutilé	Creux	Termites	I ondition [m]	Leannan land		Rondeur	Rectitude	Défauts
										 													Ī,	ļ	
												ļ													
							-	 											-	.					ļ
																							ļ		
																				.					
														 									-	ļ	
												<u>.</u>					 								
							-	 					ļļ.				ļ			.				ļ	

Souche: H tot < 0,7m

Rondeur: section cylindrique = 1/osale = 2/cannelée = 3 Rectitude: billon droit = 1/incliné ou courbé = 2/crocheté = 3 Défauts apparents: sans = 6/mineurs = 1/moyens = 2/Majeurs = 3 moyenne la plus élevée. Il faut toutefois noter que les valeurs moyennes du pH des eaux interstitielles fluctuent selon le niveau de l'eau dont dépend la salinité.

La biomasse et le carbone totaux sont obtenus par addition des valeurs de la biomasse et du carbone épigée et hypogé.

D' après nos résultats, la biomasse aérienne (épigée) est plus importante que celle hypogée dans la plupart des sites sauf à Fossemou, Nguininé, Folombite et Souhême où la biomasse racinaire est plus importante. Mais de manière générale, la biomasse aérienne totale est légèrement plus importante que la biomasse racinaire totale (258,1 contre 224 Mg/ha); ce qui donne une quantité totale de 482,1 Mg/ha soit 208,74 Mg C/ha.

Ce taux de carbone est plus faible que celui estimé en Février 2013 dans le Delta du Saloum (1829,110 Mg C/ha) sur 36 placettes réparties à Diamniadio, Fambine, Djirnda, Sangué et Moundé.

Toutefois, cet inventaire du projet SWAMP était fait sur des strates de petite, haute et moyenne taille. L'étude a permis par ailleurs de constater un état de régénération de cette mangrove par endroit.

6.2. En savane

Cette étude florale a révélé d'intéressants résultats :

- Absence de régénération naturelle et d'arbres moyens des essences de valeur telles que : Detarium senegalense et Adonsonia digitata ;
- La densité à l'hectare des essences de valeur (Detarium senegalense, Adonsonia digitata, Elaeis guineensis, Borassus aethiopum, Neocarrya macrophylla, Diospyros mespiliformis, Tamarindus indica et Acacia albida) reste également très faible;

Il faudra en termes de recommandations pour cette étude :

- Installer des placettes permanentes pour le suivi de la dynamique florale ;
- Sensibiliser les agriculteurs sur certaines pratiques culturales (défrichement, feu de contre saison, labour, etc.) destructrices de la régénération naturelle;
- Procéder à la restauration des essences Detarium senegalense et Adonsonia digitata compte tenu de leur valeur économique pour les populations locales;
- Lutter contre l'élongage des branches et les pratiques de mauvaises cueillettes des sur les espèces fruitières;
- Promouvoir les énergies de substitution (gaz, fours solaires) et l'économie d'énergie (foyers améliorés, etc.).

ANNEXES

Annexe 1: Liste des participants

N°	Prénoms et Nom	Structure/Profession
1	Badara DIOUF	Doctorant Stagiaire/ Enda
2	Capitaine Abdou DIONGUE	Conservateur RNCP
3	Lt. El hadji Fallilou NGOM	RNCP
4	Alassane CISSE	RNCP
5	Alioune Badara SENE	RNCP
6	Moctar Ndiaga DIEDHIOU	RNCP
7	Aliou SOUMARE	RNCP
8	Louise Daba SARR	Eco-guide
9	Henriette FAYE	Eco-guide
10	Pierre M NDENE	Eco-guide
11	Maurice FAYE	Piroguier

Annexe 2: Fiches d'inventaire

Site:		Date :	
Type de mangrove	2:		
Longueur du trans	ect:		
Direction du trans	ect:		
N° Placette:			
Coordonnées GPS	du centre :		
Rayon de la placet	te:		
Salinité :	pH de l'eau interstitielle :	Т° :	Profondeur du sol:

		•	•	,		•	•	•	•
N° ind	Code	dhp	M/V	CBM	H <u>si</u> <1,3		dhp tiges	r≤2m	$ \begin{array}{c} 2 \le r \le 7m \underline{si} \\ dhp \ge 5cm \end{array} $
						avant hp			anp≥5cm
_									